A COUNTEREXAMPLE TO THE NON-SEPARABLE VERSION OF ROSENTHAL'S ℓ_1 -THEOREM

COSTAS POULIOS

The following theorem is due to H. P. Rosenthal [6] and it provides a fundamental criterion for the embedding of ℓ_1 in Banach spaces.

Theorem 1 (Rosenthal's ℓ_1 -theorem). Let (x_n) be a bounded sequence in the Banach space X and suppose that (x_n) has no weakly Cauchy subsequence. Then (x_n) must contain a subsequence which is equivalent to the usual ℓ_1 -basis.

First of all, we recall that the sequence (x_n) is called weakly Cauchy if for each continuous functional $f \in X^*$, the scalar sequence (fx_n) is Cauchy. We also say that the sequence (x_n) is equivalent to the usual ℓ_1 -basis if there are constants A, B > 0 such that for any $n \in \mathbb{N}$ and any scalars a_1, a_2, \ldots, a_n ,

$$A\sum_{i=1}^{n} |a_i| \le \|\sum_{i=1}^{n} a_i x_i\| \le B\sum_{i=1}^{n} |a_i|.$$

The above condition guarantees that the linear map $T: \ell_1 \to \overline{\operatorname{span}}\{x_n \mid n \in \mathbb{N}\}$, defined by $Te_n = x_n$ for any $n \in \mathbb{N}$, is an isomorphism and therefore the space ℓ_1 embeds in X.

A satisfactory extension of Theorem 1 to spaces of the type $\ell_1(\kappa)$, for κ an uncountable cardinal, would be desirable, since it would provide a useful criterion for the embedding of $\ell_1(\kappa)$ in Banach spaces. Consequently, R. Haydon [4] posed the following problem: Let κ be an uncountable cardinal. Suppose that X is a Banach space and A is a bounded subset of X with $\operatorname{card}(A) = \kappa$, such that A does not contain any weakly Cauchy sequence. Can we deduce that A has a subset equivalent to the usual basis of $\ell_1(\kappa)$?

Before posing the question, Haydon [3] exhibited a counterexample for the case where the cardinal κ is equal to ω_1 . A completely different counterexample, for the case of ω_1 , was also obtained by J. Hagler [2]. Finally, a complete solution to this problem was given by C. Gryllakis [1] who proved that the answer is always negative with only one exception, namely when κ and $cf(\kappa)$ are both strong limit cardinals. However, Gryllakis' proof is quite difficult and, unlike the case of ω_1 , does not construct any specific counterexample.

In what follows, our aim is to present a counterexample to the non-separable version of Rosenthal's ℓ_1 -theorem and to give a complete answer to Haydon's problem. More precisely, for any uncountable cardinal κ , we construct a non-separable analogue of the Hagler Tree space (see [2]). In the case where either κ or $\mathrm{cf}(\kappa)$ is not a strong limit cardinal, using the aforementioned construction, we obtain a Banach space X and a bounded subset A of X with $\mathrm{card}(A) = \kappa$ such that (1) A contains no weakly Cauchy sequence and (2) no subset of A is equivalent to the usual $\ell_1(\kappa)$ -basis. In the case where κ and $\mathrm{cf}(\kappa)$ are both strong limit cardinals, the answer to Haydon's problem is positive (see [1]).

In the following we fix an infinite cardinal κ and we set

$$\begin{aligned} \{0,1\}^{\kappa} &= \left\{a : \{\xi < \kappa\} \to \{0,1\}\right\} \\ &= \left\{(a_{\xi})_{\xi < \kappa} \mid a_{\xi} = 0 \text{ or } 1\right\} \\ \mathcal{D} &= \{0,1\}^{<\kappa} = \bigcup \left\{\{0,1\}^{\eta} \mid \operatorname{Ord}(\eta), \eta < \kappa\right\} \\ &= \left\{(a_{\xi})_{\xi < \eta} \mid \eta \text{ is an ordinal number, } \eta < \kappa, \ a_{\xi} = 0 \text{ or } 1\right\}. \end{aligned}$$

The set \mathcal{D} is called the *standard tree* and its elements are called *nodes*. The elemens of the set $\{0,1\}^{\kappa}$ are called *branches*.

If s is a node and $s \in \{0,1\}^{\eta}$ we say that s is on the η -th level of \mathcal{D} and we denote the level of s by lev(s). The initial segment partial ordering, denoted by \leq , is defined as follows: if $s = (a_{\xi})_{\xi < \eta_1}$ and $s' = (b_{\xi})_{\xi < \eta_2}$ belong to \mathcal{D} then $s \leq s'$ if and only if $\eta_1 \leq \eta_2$ and $a_{\xi} = b_{\xi}$ for any $\xi < \eta_1$.

A linearly ordered subset $\mathcal I$ of $\mathcal D$ is called a segment if for every s < t < s', t belongs to $\mathcal I$ provided that s,s' belong to $\mathcal I$. Consider now a non-empty segment $\mathcal I$ and let η_1 be the least ordinal number such that there is a node s with lev $(s) = \eta_1$ and $s \in \mathcal I$. Moreover, suppose that there are an ordinal number η and a node s' on the η -th level such that $s \leq s'$ for any $s \in \mathcal I$. Let η_2 be the least ordinal satisfying this property. Then we say that $\mathcal I$ is an η_1 - η_2 segment.

A finite family $\{\mathcal{I}_j\}_{j=1}^r$ of segments is called *admissible* if the following properties are satisfied

- (1) there exist ordinals $\eta_1 < \eta_2$ such that each \mathcal{I}_j is an $\eta_1 \eta_2$ segment,
- (2) $\mathcal{I}_i \cap \mathcal{I}_j = \emptyset$ provided that $i \neq j$.

We next consider the vector space $c_{00}(\mathcal{D})$ of finitely supported functions $x: \mathcal{D} \to \mathbb{R}$. For a segment \mathcal{I} of \mathcal{D} , we set $\mathcal{I}^*(x) = \sum_{s \in \mathcal{I}} x(s)$. Then, for any $x \in c_{00}(\mathcal{D})$ we define the norm

$$||x|| = \sup \left[\sum_{j=1}^{r} |\mathcal{I}_{j}^{*}(x)|^{2} \right]^{1/2}$$

where the supremum is taken over all admissible families $\{\mathcal{I}_j\}_{j=1}^r$ of segments. We set X_{κ} the completion of $c_{00}(\mathcal{D})$ under this norm.

Now let $B = (a_{\xi})_{\xi < \kappa}$ be any branch. Then B can be naturally identified with a maximal segment of \mathcal{D} , namely

$$B = \{s_0 < s_1 < \dots < s_{\eta} < \dots\}$$

where $s_0 = \emptyset$ and $s_\eta = (a_\xi)_{\xi < \eta}$. For any function $x \in c_{00}(\mathcal{D})$ we have already defined $B^*(x) = \sum_{s \in B} x(s)$. Clearly, $B^* : c_{00}(\mathcal{D}) \to \mathbb{R}$ is a linear functional of norm 1. This functional can be extended to a bounded functional on X_κ , which is denoted again by B^* . Let Γ be the set which contains the functionals B^* defined above. Clearly, Γ is a bounded subset of X_κ^* with $\operatorname{card}(\Gamma) = 2^\kappa$.

Concerning the space X_{κ} and the family of functionals Γ , we prove the following theorems.

Theorem 2. Any sequence $(B_n^*)_{n\in\mathbb{N}}$ in Γ has a subsequence equivalent to the usual ℓ_1 -basis. Therefore, Γ contains no weakly Cauchy sequence.

Theorem 3. No subset of Γ is equivalent to the usual basis of $\ell_1(\kappa^+)$.

Now let κ be a cardinal number, which is not strong limit. This means that there exists cardinal $\lambda < \kappa$ such that $\kappa \leq 2^{\lambda}$. Consider the space X_{λ} and the corresponding family $\Gamma \subset X_{\lambda}^*$. Then we have $\operatorname{card}(\Gamma) = 2^{\lambda}$ and hence we can choose a subset A of Γ with $\operatorname{card}(A) = \kappa$. By Theorem 2, the set A contains no weakly Cauchy sequence. Furthermore, by Theorem 3, no subset of A is equivalent to the usual $\ell_1(\kappa)$ -basis.

Moreover, in the case where κ is strong limit and $\mathrm{cf}(\kappa)$ is not a strong limit cardinal, using our construction, we obtain a Banach space X and a subset A of X with the desired properties.

Finally, the main properties of the spaces Hagler Tree [2] and James Tree [5], by which our construction is inspired, suggest the following conjecture for the spaces X_{κ} .

Conjecture. The space X_{κ} does not contain a subspace isomorphic to $\ell_1(\kappa)$.

Concerning the above conjecture, a partial result can be proved rather easily. For any node $s \in \mathcal{D}$, let $e_s \in X_{\kappa}$ be defined by $e_s(t) = 1$ if t = s and $e_s(t) = 0$ otherwise. Now consider any branch B and the subspace $\overline{\operatorname{span}}\{e_s \mid s \in B\}$. Then this subspace contains no isomorphic copy of $\ell_1(\kappa)$.

REFERENCES

- C. Gryllakis, On the non-separable version of the ℓ₁-theorem of Rosenthal, Bull. London Math. Soc. 18 (1987), 253-258.
- [2] J. Hagler. A counterexample to several questions about Banach spaces. Studia Math. 60 (1977), 289-308.
- [3] R. G. Haydon, On Banach spaces which contain ℓ₁(τ) and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324.
- [4] R. G. Haydon, Non-separable Banach spaces, Functional Analysis: surveys and recent results II (ed. K. D. Bierstedt and B. Fuchssteiner, North-Holland, Amsterdam, 1980), 19-30.
- [5] R. C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974),738-743.
- [6] H. P. Rosenthal, A characterization of Banach spaces containing ℓ¹, Proc. Nat. Acad. Sci. 71 (1974), 2411-2413.

Department of Mathematics, University of Athens, 15784, Athens, Greece $E\text{-}mail\ address$: k-poulios@math.uoa.gr